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Abstract

We present a convenient way to evaluate the information entropy of a quantum mechanical
state via the Glauber Q-representation. As an example we discuss the information entropy

of a thermally relaxing squeezed state in terms of its Q-representation and show the validity

of the corresponding entropic uncertainty- and Araki-Lieb inequalities.

1 The information entropy

Shannon and Wehrl were the first to describe the information of a quantum mechanical state in

terms of its probability distributions [1]. Later, there has also been a substantial amount of work

on this topic from the quantum optics point of view [2]. The question of comparability of the

information entropy with the Heisenberg uncertainty has been treated as well. The Heisenberg un-

certainty has turried out to be of enormous significance because of its experimental measurability.

However, it only takes the second moments into account whereas the information entropy is sup-

posed to be an exact measure of the information and thus of the uncertainty or non-information.

In comparison to the significant Heisenberg uncertainty inequality, there is a similarly meaningful

entropic uncertainty relation. Bialynicki-Birula et al., derived such an inequality more than 15

years ago [3].

In this paper we would like to put forward a possibility to evaluate the information entropy

as a function of the Q-representation since this representation is well-known for many interesting

quantum mechanical states and completely describes the state. In particular we here would like

to investigate the information entropy for the squeezed state which evolves to a thermal state via

an appropriate Fokker-Planck equation. Special interest is devoted to the entropic uncertainty

relation. As a major result we show that a squeezed state also obeys the minimum entropic

uncertainty relation. However, it turns out that the evolution of the squeezed state via the Fokker-

Planck equation, does lead to a change of the information entropy and the marginal contributions

but surprisingly does not influence the minimality of the uncertainty relation. This even means
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that a thermal state fulfills the entropic uncertainty relation with an equal sign. We moreover

investigate the Araki-Lieb inequality [4] for information entropies and find agreement with the

well-known results of yon Neumann entropies for the thermally relaxing squeezed state.

We start off the paper with some basic facts on entropies and develop an expression for the

information entropy in terms of the Glauber Q-representation. The definition of the quantum

mechanical entropy is given by:

S = -Tr{_ln_} (1)

with _ being the density matrix operator and assuming the Boltzmann constant to be 1. This

often called von Neumann entropy is zero for a pure state and non-zero for a mixed state. It is

moreover known to be constant for a closed system which arises from the fact that a unitary time

evolution does not change the eigenvalues of _.

Thus, normally, the evolution of the entropy of subsystems of a closed system is of greater

interest. Considering two disjunct interacting systems that form together the whole system being

described by _, we can introduce the reduced density operators PA = TrB{_} and pB = TrA{_},

where Tra and Tr8 abbreviate the tracing over the variables of the subsystems A and B, respec-

tively. This leads to the definition of the entropy of the subsystem A: S(_A) ---- --TrA{_Aln_A}

and to the analogous expression for subsystem B by replacing A by B in the above formula.

These reduced'or here called marginal entropies describe information or more directly disorder

and uncertainty of A and B and are notnecessarily time independent like the entropy of the whole

system S of Eq.(1). Information about the interaction of A and B is neither included in S(_A)

nor in S(_B) so that we expect the sum of S(_A) and S(_s) not to be smaller than S. And, in

fact, Araki and Lieb [4] proofed the following triangle inequality:

- s( s)l _<s _< + (2)
Because of the close relation of entropy and uncertainty and moreover the existence of a lower

bound of S, the second inequality can be interpreted as uncertainty relation. The calculation of

the above entropies requires the diagonalization of the reduced density operators. Since this is

often difficult, the information entropy or Shannon-Wehrl-entropy was introduced according to:

O) -- - Z( l le)ln< l le), (3)
e

with

'  )le) = e[e). (4)

The corresponding expressions for the subsystems can be obtained by exchanging/_ by _A or _s,

where the so far arbitrary operator g) may be chosen differently. If we are dealing with operators

that can be expressed in terms of the annihilation and creation operators h and ht of a boson field,

it is reasonable to consider the information entropy

S (/_,&) - - /d2_l(_]Pla) In (1(ain't))

= _ f

(5)

(6)
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where I

Q(_)- _(,_1_1,_) (7)

is the well-known Glauber representation of a state/i, and where [a) is the boson coherent state

with the decomposition of unity f d_a[c_)(a[ = 7r.

According to following calculations, the information entropy of a squeezed state is not zero

as opposed to the yon Neumann entropy which is always zero for a pure state. This obviously

makes the information entropy more interesting than the yon Neumann entropy. The form of

Eq.(5) as well as Shannon's early work [1] suggest to define an information entropy for any phase

space distributiofi. The Q-representation, however, has turned out to be appropriate for realitic
measurements as shown in the analysis in terms of phase propensities [5] and heterodyne measure-

ments. [6] For the investigation of the entropic uncertainty principle for information entropies,

the marginal entropies are evaluated by inserting the marginal Q-representation in the above ex-

pressions, instead. Letting al and a2 be arbitrary coordinates in the complex plane of c_, we thus

define

Q,(a_) = f d,_jQ(,_,, ,_j) (8)

and
P

s_ = - ] da_Q_( a_ )lnQ_( _ ) (9)

for i, je{ 1,2], i unequal j. This leads to the entropic uncertainty relation for information entropies,

which, as a major result of this study, will turn out to hold for the squeezed state and its thermally

relaxing state.

In the following, we put forward the time independent information entropy of a squeezed state and

its evolution to a thermal state via the Fokker-Planck equation and evaluate the corresponding

information entropies.

2 Information entropy and entropic

of a squeezed state

2.1 Statics

In this section the squeezed state is described by the time independent Q-representation

1 [_,a a°[2+th(s)l'(a2 " a°)2+(a'-o°)2}]Q(c_,c_')- _rch(s) exp - - ,

with the corresponding information entropy:

uncertainty relations

(lo)

S = - f d2aQ(a,a*)lnQ(a, a') = 1 + In 2 4- ln(e' + e-°). (11)
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The letter s here denotes the squeezing parameters and ¢'0 describes the coherent state which has

been squeezed. We now want to compare S with the information entropies obtained out of the

marginal Q-representations. Those marginal information entropies are obviously dependent on

the choice of coordinates, where our considerations in the following will concentraate on the most

interesting Cartesian coordinates.

The Q-representation in Cartesian coordinates (a_ = Rea, (_v = Ima) has the form

2 (12)1 [ +Q(a='%)- _rch(s) exp[. 1 +e 2°(a=- x

leading to the marginal quasi-probability distributions,e.g.:

Q_(a_) =/_7 d%Q(a_,%)= 7rcla(s) exp 1 -_e _;(ax -(_°)_)_ '

and thus to the marginal information entropies, e.g.:

(13)

1 11 rSx = - / Q_(a.)lnQ_(a_)da:: = _ + _ n_ + ln(1 + e2°), (14)

1 . _ln(1 e-Z°).and correspondingly S_ = _ + _ln_ + + Considering above equations, it is now easy

to see that squeezed states fulfill minimum entropic uncertainty

S=S_A-5 v, (15)

and that the Araki-Lieb inequality is valid as well: IS_ - S_[ < S.

A similar consideration can be done for polar coordinates with a = re i_ and ao = roe i_. The

integrals here are not as straight forward as in the Cartesian case. For special cases as the weakly

squeezed vacuum, however, it was possible to show the validity of the uncertainty and Araki-Lieb

relation [7].

2.2 Dynamics

Our interest now turns to the time evolution of the information entropy, its marginal information

entropies and its influence on the inequalities investigated in the preceeding section. The time

evolution of the Q-representation is governed by the Fokker-Planck equation

__0_0c.' _ O2
cOtQ= [2(£ct+ 0o_* ]+Y_]Q" (16)

This equation follows from the well-known Fokker-Planck equation for the P-representation with

Q(_,t) = f d-_ exp[-](_- 3[a]P(_,t), fi is the mean number of photons and r] turns out to be

+ 1).
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We now move on with the solution of the Fokker-Planck equation for Q, assuming the squeezed

state to be the initial state at time t equal to 0. Following reference [7] this turns out to be:

Q('_,O

1 [-13 _ol'+ {(3 + 'x 7rch(s) exp - lth(s) -ao) 2 (3" a0)2}]

= exp[a(t)lc_l 2 + b(t)(a= + a.a) + c(t)_ + c(t)'a* + N(t)],

(17)

(IS)

(19)

with n(t) = _(1 -e-'rt). For the rather long analytic expressions of a(t),b(t),c(t) and N(t) we

refer to reference [7]. At this point it will only be of interest that the Fokker-Planck equation has

preserved the Gaussian character of the initial state.

In the following we would like to point out that also the time dependent Q representation due

to the last equation leads to minimum uncertainty. Even more it turns out that every normalized

Gaussian function of the following form has this property:

Q(a,t) = exp[a(t)la[ 2 + b(t)(a 2 + a .2) + c(t)c_ + c*(t)a* + g(t)], (20)

where the real coefficients a(t), b(t) and the complex c(t) are now arbitrary with the only restric-

tions to fulfill: a(t) < 0, 2lb(t)l < la(t)l and N(t) is determined such that Q(a,t) is normalized.

Using the same notation as in the static case, some algebra gives rise to the corresponding infor-

mation entropy and marginal entropies:

S(t) = 1 +Inn- lln(a2(t)-4b2(t)), (21)

1 1 ½Sx(t) = -_ + _lnr- ln(-a(t)- 2b(t)), (22)

1 1 ½&,(t) = _ + _ln_" - ln(-a(t) + 2b(t)), (23)

yielding immediately for all times t

s(t) = &(t) + &(t). (24)

At t = 0 this is in agreement with the minimum Heisenberg uncertainty relation of a Gaussian

wavepacket of the above form because the product of uncertainties in space and momentum is

exactly one. Since the Fokker-Planck equation does conserve the Gaussian character of the wave

function and does moreover give not rise to any phase factor, the Cartesian entropic uncertainty

relation is even fulfilled with the equal sign for all times. Thus we have also a minimum uncertainty

relation for the thermal state, what is not expected from the Heisenberg uncertainty inequality.

Moreover one finds for any Gaussian distribution that the Araki-Lieb inequality is equivalent

to:

_ + _ _<-_ln(_ -4b _)+ 1+ lu,_ (25)
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In the caseof a thermally squeezedwith its particular valuesfor the coefficientsa(t), b(t), c(t) and

N(t) an even stronger inequalility can be derived:

s(t)-(1+ In2). (26)Isx(t)s_(t)l <

which , however, does not mean that all phase space distributions fulfill the Araki-Lieb or even

the improved inequality [7].

In conclusion, we introduced a way to evaluate the information entropy in terms of the Glauber

Q-representation. Taking advantage of these entropies, we approached the question of comparabil-

ity of the Heisenberg uncertainty and the Shannon-Wehrl-entropy like description of information

for the example of a thermally relaxing squeezed state. The first just considers second moments

and is therefore a - though very important - approximation whereas the other is exact but aca-

demic. We find full accordance concerning the validity of the Heisenberg and entropic uncertainty

inequalities for the thermally relaxing squeezed state but as expected also observe disagreement

in the case when the equal sign holds.
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